
Software Development as Knowledge Creation 
International Journal of Applied Software Technology, Vol. 3, No. 1, March, 1997. 

 
Sidney C. Bailin 

Knowledge Evolution, Inc. 
1748 Seaton Street, NW 

Washington, DC 20009, USA 
sbailin@kevol.com 

 
 

Abstract 
 

This paper proposes a fundamental change in the way we view software 
development and the role of software in our society.  We argue that the 
conventional understanding of software as a vehicle for automation is 
responsible for some of the most serious problems in the industry.  As an 
alternative, we present a view of software as knowledge, and software 
development as knowledge creation.  This shift in understanding can help to 
unsettle many deeply ingrained beliefs that have contributed to the software 
crisis; it points the way to alternative processes based on the goals of inquiry, 
discovery, and knowledge sharing.  

 
 

1  Introduction 
 
This paper proposes a fundamental change in the way we view software: not just the 
development of software, but its very nature and role in our society.  We argue that the 
prevailing view of software as a vehicle for automation is a half-truth, one with far-
reaching negative consequences.  As an alternative, we offer a view of software as an 
encoding of knowledge.  This view, when pursued rigorously, can point towards solutions 
of many problems that have dogged the software industry for decades. 
 
The view of software as a vehicle for automation is, in essence, a functional paradigm.  Its 
implications, however, go well beyond the technical disciplines of software development, 
such as analysis, design, implementation, and testing.  In the second section of this paper, 
we describe how this viewpoint affects the major non-technical aspects of the software 
industry: how it leads to the institution of structures and practices that have caused, and that 
now prolong, the software crisis (see, for example, U.S. House of Representatives, 1989).  
In this section we also offer a glimpse of how the knowledge creation paradigm can lead to 
alternative structures and practices. 
 
In the third section we discuss an intermediate view, which regards software systems as 
models of an enterprise.  This view is closely related to the adoption of object-oriented 



technology.  We describe both its benefits, as a shift away from the prevailing functional 
view of automation, and its limits in addressing some basic, non-technical problems. 
 
The fourth section presents our view of software development as knowledge creation.  Our 
argument is that software development is, by its very nature, a process of discovery and 
invention.  Development methodologies and tools should foster this process rather than 
reining it in. 
 
Such a shift may seem ill-advised, likely to increase risk in what is already a risk-plagued 
field.  Discovery and invention are usually considered more appropriate to research than to 
the engineering of large, complex systems.  We are not, however, arguing for undisciplined 
approach; we argue, rather, for a different discipline.  Software development should be 
based on scientific procedures of hypothesis, experimentation, and test, systematically 
building on and evolving what is already known. 
 
Underlying this argument is our observation that software is not, as is often maintained, just 
like any other engineering discipline.  It is true that many of the most important advances in 
software engineering (such as component-based development) have been motivated by the 
goal of emulating more established fields of engineering (such as circuit design).  Our 
position recognizes the usefulness of this goal, but also its limitation, which is that it 
ignores the distinctive aspects of software development.   
 
This is the hard reality:  software is where we are most likely to put unprecedented 
functions; it is the medium of choice to hold the ever-increasing complexity of the things 
we want to build.  The role of software in our society, for better or worse, has become that 
of a complexity sink. 
 
1.1  Why is Software a Complexity Sink? 
 
The root cause of this distinctive role is an unspoken belief that, in some sense, software is 
easy to change.  Today we know better, as the complexity of software has made it, in fact, 
extremely difficult to change.  But the unspoken belief is more basic, perhaps having 
something to do with the weightlessness of the medium.  At some deep level we still 
understand software in terms of the early programming model shown in Figure 1-1. 
 
It is easy to argue that this understanding is fallacious. Those who would make software 
just like any other engineering discipline have an implicit (or sometimes explicit) goal of 
replacing the model shown in Figure 1-1.  In this battle they face quite a challenge, 
however.  They must convince developers, who are after all human, that an extraordinarily 
empowering experience was really an illusion.  Some reflection on this implicit goal may 
help us understand why progress has not come faster. 
 
The powerful effect of the early programming experience is more relevant today than it has 
been for several decades.  A new and vast generation of non-professional programmers has 
access to tools — scripting languages, world-wide web-based development kits, visual 
programming environments —  that reinforce the experience summarized in Figure 1-1.  
These new programmers are not just writing private programs for their own use at home.  
They include doctors developing their own office management software, and entrepreneurs 
developing web sites.  They represent a new segment of the software industry, and with it 



the industry is undergoing a kind of second childhood that undermines much of what the 
field of software engineering has tried to accomplish. 
 
 

Write a 
program to do 

X

Observe that this is 
not exactly what one 

wanted

Change the 
program

 
Figure 1-1: The early programming model has influenced our view of software as 

being fundamentally easy to change. 
 
If we appreciate the power of the early programming experience, we can view the 
maturation process not as replacing beliefs but as placing them in context.  The idea that 
software is easy to change is not entirely incorrect, but rather myopic: in the private 
relationship between a sole developer and a software system, change is relatively easy.  It is 
only when the developer and the system operate in a context of external constraints and 
effects that change becomes difficult. 
 
Despite these lessons, systems continue to evolve rapidly, and software persists as a 
complexity sink.  Apparently, then, the empowering vision summarized in Figure 1-1 
regularly overrides the dampening effect of engineering discipline. This is not hard to 
understand if we take the psychological implications of the maturity metaphor seriously.  It 
suggests that the empowerment of commanding, of automation, can only be replaced by 
some other form of empowerment.  The knowledge creation paradigm suggests an 
alternative: the empowerment of discovery. 
 

2  Software as Automation 
 
The conventional view of software is that it is a vehicle for sophisticated automation.  In 
other words, software embodies our intentions for how machines should operate.  Software 
development is a process of expressing those intentions in the language of machines.  This 
view has its origins in the field of command and control, one of the earliest applications of 
software.  It is equally prevalent in the field of information processing, and by now it seems 
basic and hardly questionable. 
 
The depth of this mental model is suggested by the term programming, which used to mean 
what we would now call software development.  In some circles, such as the new 
generation of non-professional developers, it still does mean this.  In the industry, we have 
since become smart enough to know that software development involves more than just 
writing code.  But, even as an industry, we have not outgrown the fundamental perception 
captured in the term programming, namely, that software is a tool for commanding 
machines. 



 
Unfortunately this view, which we have come to regard as obvious, lies at the root of 
phenomena collectively known as the software crisis, such as the explosion of cost, 
unpredictability of schedules, and incorrect behavior of the end product. The automation 
paradigm, summarized in Figure 2-1, causes developers to continually underestimate the 
complexity and amorphousness of the design process and the consequent risks. 
 

Intentions Translation Code

 
Figure 2-1:  The automation paradigm's emphasis on end product 
accounts for many of the industry's most persistent problems. 

 
The methodological and procedural advances in software development over the last fifty 
years have been a response to the recurrence of these problems.  As important as they are, 
however, they have failed to fundamentally change the situation.  They have not attacked 
the underlying beliefs that lead us continually to underestimate complexity and change.   
 
As the industry has grown we have become more subtle in our understanding of the 
paradigm.  We know, for example, that intentions start out as fuzzy and ill-defined, and 
must be clarified through analysis, and validated, and continually revisited.  The disciplines 
of requirements analysis and rapid prototyping, and various alternatives to the waterfall 
lifecycle model, have grown up in response to this recognition (Patterson 1997).  But these 
disciplines notwithstanding, we still think in terms of clarifying the requirements, and 
verifying and validating our decisions against the requirements.  Although backtracking 
and iteration are expected, the emphasis is on reaching the end product (Figure 2-2).  
Development is viewed as a series of translations, from fuzzy to precise, from abstract to 
machine processable.  
 
2.1  How the Automation Paradigm Governs the Industry 
 
The view of software as automation permeates every aspect of the industry today: from the 
management structures we expect, to the processes for acquiring turnkey systems, to the 
legalities of ownership and data rights, and the technical procedures themselves.  We 
describe here some of the ways this influence can be observed. 
 
Management structures.  When software is viewed as automation, software development 
is viewed as a service supporting corporate goals.  The nature of a service is to accept 
orders (or requests) and respond with a product.  Software requests take the form, "We need 
a system that does X," or "We need to change System X to do Y." The goal is the end 
function. 
 



Intentions Translation Code

 
Figure 2-2: Iterative lifecycle models have not altered the emphasis on end 

product. 
 
The service model reveals itself in top-down management structures.  Needs are articulated 
at the top, then translated into tasks that are passed down as assignments to subordinates.  
There is often a flow of requests in the opposite direction.  Infrastructure needs, for 
example, are solicited from those in the trenches.  Typically, however, these needs are 
added to a list spanning wider segments of the organization, and are then subjected to the 
exigencies of allocated budgets.  The flow of decisions remains, in essence, top-down.   
 
The ineffectiveness of the top-down process becomes clear when infrastructure, training, or 
other needs are discovered at inopportune times — for example, midway into a project.  In 
keeping with the service model, such events are attributed to inadequate planning and are 
viewed negatively.   
 
Preview of a knowledge-creating alternative.  What such events are, in fact, is evidence of 
discovery: new knowledge has been acquired or developed.  While the service-oriented 
organization will see the event as an error or setback, the knowledge creating organization 
will try to convert it into leverage.  In a discovery oriented process, failures and errors are 
expected and are treated as fuel to drive the expansion of knowledge.   
 
Acquisition processes.  The view of software as automation reveals itself in the hand-off 
approach to system acquisition.  Needs and tasks flow between organizations in a top-down 
manner, similar to the management structure just discussed.  This, too, is mitigated by 
enlightened participants: the wise system development company will keep its customer 
involved at every stage of decision making.  But, in the end, it is the software system that 
the customer wants; the builders have an interest in maintaining a proprietary culture; so it 
is the rare project indeed in which the customer is a full participant in the design decisions.   
 
The requirements specification is viewed as the customer's safeguard against a builder's 
potential abuse of this privilege.  Frequently, however, specifications do not communicate 
the essence of a customer's intentions, or if they do, it is necessarily in language that cannot 
be considered contractually binding.  When a developer then builds to the contractually 
binding words, the customer may be understandably dissatisfied. 
 
Another intended safeguard is the customer's insistence on receiving design and code 
documentation along with the software as part of the delivered product.  Unfortunately, 
most documentation (at best) tells what but not why.   It does not explicitly call out the 
decisions that went into a system design.  The decision process, as rich, complex, and 
fractal as it is — full of dead-ends, miscues, and the influence of multiple stakeholders with 



different priorities and different views of the goals — is not easily captured in a product 
that can be handed off to a customer. 
 
Preview of a knowledge-creating alternative.  Imagine if the design record were treated as a 
first-class product, as important as the delivered system itself.  The entire system lifecycle, 
from planning to operation and maintenance, could be viewed as a sustained dialog about 
the capabilities of the system.  A "living" design record would be consulted and modified as 
a matter of course as the system evolves.  Supporting such a process will not be 
technologically trivial.  As important as the technology, however, is the change in mental 
models from an emphasis on the end product to an emphasis on the continuing dialog. 
 
Ownership. The knowledge generated as a system is developed has competitive value.  It 
may be in the interest of the developing organization to treat this knowledge as proprietary.  
When a customer pays for the development of a turnkey system, they may claim rights to 
any intermediate products created in the process. But they have no effective way to ensure 
the transfer of knowledge.  If the transaction is formulated as buying a system, and the 
system is viewed as a vehicle of automation rather than as an encoding of knowledge, the 
developing organization's commitments may be satisfied by a mutually agreed upon set of 
operational tests.   
 
There may, in addition, be documentation and training requirements.  But these typically 
contain only a very thin slice of the knowledge generated during development.  Because the 
boundaries are not clear, what ensues is a confused dependency relationship between the 
customer and the developer (or another support contractor who is necessarily less well 
endowed with knowledge of the decisions made during development). The customer both 
wants and does not want to be free of the dependency and assume the burden of system 
evolution.  The underlying problem is that the customer never really knows what he is 
getting. 
 
Preview of a knowledge-creating alternative.  A "living" design record, treated as part of 
the system being bought, might help to alleviate this problem.  It is not, however, a 
panacea.  The recent emphasis on product-line architectures for large complex systems 
could actually be construed as movement in the opposite direction, towards a black-box 
approach in which less information is provided to the customer. 
 
This movement is, however, quite consistent with the knowledge creating paradigm.  On 
the one hand, product line architectures are an explicit embodiment of domain knowledge.  
On the other hand, the conformance of individual systems to a product line architecture 
considerably reduces the customer's risk in buying a turnkey system.  The relationship 
between customer and developer becomes closer to what we see in the world of commercial 
off-the-shelf products.   
 
Technical processes.  The most obvious consequences of viewing software as automation 
appear in the practices of developers themselves.  Software engineering has fostered a 
design discipline of sorts, but its emphasis has been on the representation of design 
decisions, not on the reasoning process through which the decisions are reached.  The 
widely known methodologies certainly recommend identifying and evaluating design 
alternatives, but they do not offer procedures to do so systematically; they provide no 



guidance for representing this information in a form that can be monitored, reassessed, and 
changed over time. 
 
An even greater problem is the delegation of low-level design decisions to the coding 
process.  This is a phenomenon that can hardly be appreciated, or even recognized, by 
anyone who has not coded a complex system.  The entire notion of "coding to 
specification" is based on the fallacy that critical decisions stop when coding begins.  
Numerous choices are faced in the process of coding, many of which have significant 
impact on the performance, maintainability, and even the proper functioning of a system.  
The variations of alternatives can be numerous, and the tradeoffs between them subtle. 
 
These choices do not surface during the recognized design process because they occur at 
too low a level of abstraction: they may not even be expressible in the adopted design 
notation.  Attempts to drive the design process down to a level comparable to code have 
typically resulted in program design languages, or pseudocode.  These have proven 
unsatisfactory for two reasons. On the one hand, "design" in such languages consists of no 
more than an initial coding effort, rather than a thorough exploration of design alternatives.  
On the other hand, because this "design" process is correctly viewed as a form of coding, it 
is seen by many as superfluous. 
 
The result is that coders become, by default, critical designers.  Yet they work in the belief 
that the critical design decisions have already been made.  This may be true even of 
conscientious programmers who take pains to create maintainable code and document its 
logic.  They do not see themselves as decision makers in a continuum that started with the 
initial planning of the system.  At best, their documentation will support intellectual 
commerce with future maintainers or modifiers of the code, but not with the community of 
stakeholders as a whole.  The value they produce is understood to lie in properly operating 
code, not in the trail of choices made along the way. 
 
Preview of a knowledge-creating alternative.  When programming is viewed as a process 
of raising issues, identifying and evaluating alternatives, and deriving decisions, then 
coding will really be just coding, the relatively routine process of writing in the syntax of a 
particular programming language.  This is the goal of Literate Programming, a discipline 
that beautifully exemplifies the idea of software development as knowledge creation 
(Knuth, 1992). 
 

3  Software as Models of an Enterprise 
 
The growing use of object-oriented methods has fostered a change in beliefs about the role 
and nature of software.  Software is coming to be viewed as more than a way of 
commanding machines; it is understood as a way of modeling an organization's structure 
and function.  Trends such as enterprise modeling and business process reengineering have 
helped spread this understanding to the non-technical participants in development 
organizations. 
There is no need, in this paper, to rehearse in detail the motivation and rationale for object 
orientation.  It is a way of making systems more adaptable to change, and it achieves this 
goal by explicitly representing knowledge that is left implicit in functional approaches.  
The object-oriented approach requires developers (at all stages of the system lifecycle) to 
ask such questions such "What are the objects, what services do they perform, and how do 



they interact?"  In addressing such questions, developers must think beyond the immediate 
operational goals of the system.  They must consider the kind of context that we discussed 
in Section 1.1. 
 
There is a conundrum, though, in the modeling process, concerning the distinction between 
models as a representation of something that already exists, and models as a way of 
articulating thoughts.  The first meaning is the usual interpretation.  Modeling is understood 
as something similar to photography (or perhaps representational sculpture or painting): 
one sees what is out there, and one represents it in the chosen medium which in this case is 
software. 
 
It is the second meaning, however, that more accurately describes object-oriented software 
development.  As soon as one starts designing a software system, one begins to propose and 
experiment with objects that do not represent any previously recognized external entity.  
The definition of such objects cannot be verified as accurate representations; they must be 
assessed, instead, in terms of the goals of the system, such as performance, maintainability, 
reusability, and other quality factors.  The question for designers, then, is not whether the 
model is correct, but whether it is useful.  And that is a far less cut-and-dry issue (see, for 
example, the treatment of purpose as a dimension distinct from structure and function, in 
Sage, 1995). 
 
The matter is further complicated by the fuzzy boundary between "things that already exist" 
and "proposed abstractions."  The context modeled by a new system usually includes 
already existing systems that support the organization's practices.  Perhaps the new system 
will interoperate with these systems, or perhaps it will replace one or more.  The existing 
systems may have introduced their own artifacts, as well as human procedures, in their 
model of the enterprise.  When the earlier systems were built, these artifacts may have had 
the status of abstractions because they did not correspond to any previously recognized 
entity in the organization.  But as a system becomes established within an organization, the 
artifacts that it manages become recognized as part of the organization.  Reengineering an 
organization involves asking whether these artifacts and procedures are (or remain) 
essential.  This too is not a cut-and-dry issue. 
 
Our conclusion is that modeling, whether object-oriented or of some other form (such as 
rule-based), is not photography.  It is not simply a process of representing observations.  It 
is, rather, an experimental process in which models are proposed, evaluated as to their 
usefulness, refined, rejected, or replaced.  The resulting model, represented in a set of 
software classes and objects, is (like the documentation discussed in Section 2.1) only a 
thin slice of the knowledge generated along the way — knowledge that is required in 
maintaining the model as an organization evolves.  
 

4  Software as Knowledge 
 
The idea of a knowledge creating organization was introduced by Nonaka (1991, 1995). It 
is closely related to concept of the Experience Factory (Basili et al, 1994).  In this section, 
we describe how software development may be viewed as a knowledge creating activity. 
 
In certain key respects, software development resembles science and mathematics more 
than engineering.  The proposal and evaluation of alternative models is a scientific process.  



The definition of layer upon layer of abstractions, each of which becomes assimilated over 
time into the common vocabulary, is similar to the progress of mathematics.  These two 
features, experimentation and continual abstraction, distinguish software development from 
other engineering disciplines.  They are a direct result of the role of software as a 
complexity sink, as the medium of choice for implementing unprecedented functions. 
 
Complexity and novelty introduce unknowns; as the software developer grapples with 
them, knowledge is created.  The unknowns, which are the source of most risk in building a 
system, fall into three broad categories, shown in the first column of Table 4-1.  A software 
development project of any significant complexity will face all three types of uncertainty.  
As shown in the second column of Table 4-1, software engineering offers methods for 
managing each type of uncertainty.   
 
 
 
Not knowing exactly what we want • Requirements analysis 

• Rapid prototyping 
Not knowing all relevant legacy • Software reuse 
Not knowing the solution to a new problem • Technology innovation and transfer 

Table 4-1: Software engineering attempts to address each major type of uncertainty. 
 
The problem is that we view these methods as countermeasures.  Their value, in the 
conventional view, lies solely in how well they guide us to the end product.  The "heat" 
generated by the activities — the knowledge produced along the way — is treated as a by-
product and is rarely harnessed.   
 
This orientation has an unfortunate consequence.  In a world of cost and schedule 
constraints, the emphasis on the end product gets translated into a self-defeating 
proposition.  Knowledge creation activities are minimized so that a project can reach the 
end product on time and within budget.  The simplistic formula of translating intentions 
into code (Figure 2-1) wins out.  
 
This process is self-defeating because, as we have tried to show, the knowledge creation 
activities cannot be avoided.  By not harnessing the "heat" that they generate, we sentence 
ourselves to rediscovering the same mistakes and the same solutions over and over.  We 
increase the likelihood that suboptimal decisions will be made because knowledge was 
incomplete.  We cripple the sustaining engineering process, because the software to be 
maintained and evolved is documented as a set of unattributable facts, rather than as the 
result of careful reasoning. 
 
The knowledge creation paradigm starts from the premise that the "heat" generated during 
software development has value. The product is not just the software system itself but also 
all of the knowledge generated in building, operating, and maintaining the system.  This 
includes a trail of the key decisions made, their rationales, and the reasoning and criteria 
that went into the decisions.  It includes lessons learned in the development process, 
experience gained over time through use of the system, and links to the broader base of 
knowledge acquired over time by the development and customer organizations. 
 



The challenge of software development technology, in this paradigm, is to enable 
developers and other stakeholders in the process to acquire the knowledge they need, when 
they need it. 
 
4.1  The Role of Discovery 
 
It is the nature of software development to produce surprises: almost anyone who has had 
practical experience developing a complex system will agree.  Nevertheless, this persistent 
characteristic is most frequently seen as something to be overcome.  Surprises are 
considered to be evidence of inadequate planning, and their avoidance essential to a well-
managed project.  Recognizing that surprises will inevitably occur, planners may budget 
resources for unanticipated events, or they may factor a margin of error into their estimates.  
In this way, they try to estimate the unknown.  If they are wrong, the project suffers. 
 
In an industry that is trying to become more mature as an engineering discipline, it seems 
anathema to suggest that all software development is, at root, experimental.1  One sign of 
maturity, however, is a respect for facts, and the persistence of surprises should indicate 
that something other than bad planning is going on. 
 
In the knowledge creating approach, we see the development of a software system as a 
process of answering a long series of questions — a gradual reduction of uncertainty.  We 
can think of this as an image (our image of the desired system) gradually coming into 
focus.  A GIF image loaded over the internet provides a good example: the image is 
displayed as a set of tiles that is at first course-grained and offers only a crude resemblance 
to the desired picture; over time, the tiles becomes finer, more details are filled in, and the 
image becomes clearer and more accurate. 
 
The questions begin at the planning stage (What do we need?  Can we afford it?) and 
continue through implementation, test, operations, and maintenance.  Uncertainty rules at 
each stage.  Even seasoned programmers, for example, will find themselves painted into a 
corner as a result of a coding decision, and will have to backtrack to a different 
implementation approach.  This happens because the network of design interdependencies 
is too complex to foresee all of the implications in advance.  Sometimes the only way to 
understand the consequences of an approach is to try it out. 
 
This is not poor engineering; it is disciplined experimentation.  The successful developer is 
one who optimizes the process by quickly recognizing the need to backtrack, and by 
learning from each such event so that it need not be repeated.   
 
A positive form of opportunistic discovery occurs when the developer recognizes a new 
abstraction: a technique developed as an ad hoc response to a task is recognized to be more 
broadly applicable.  The unexpected discovery of abstractions lies at the heart of software 
evolution.  Reuse and domain engineering methods must accommodate this phenomenon if 
they are to be taken seriously by working software developers. 
 

                                                 
1 The author owes the observation that software development is inherently experimental to 
Professor Vic Basili of the University of Maryland. 



 
4.2  Relationship with Software Reuse 
 
The relationship between "software as knowledge" and "software reuse" is captured by a 
concept called Difference-Based Engineering (DBE).  DBE emphasizes the building of 
deltas rather than entirely new software.  The essential idea in DBE is to match the current 
task as closely as possible to something (or several things) that the development 
organization has done in the past.  The current task is then performed by modifying, as 
necessary, the products of the previous work.  The modification is a delta over the original 
products. 
 
From one perspective, DBE may be considered as systematic software reuse.  The 
emphasis, however, is different from the usual connotations of reuse as that term is often 
applied.  DBE involves the reuse not just of software components or other lifecycle 
products (such as requirements models) but of any form of packaged knowledge that has 
been acquired through the processes of discovery and learning.  These knowledge assets are 
represented in the organization's Experience Base.  Unlike the widely held view of reuse, 
DBE emphasizes the differences between past efforts and the current task.  By assuming 
that the Experience Base may not contain an exact match to the current task — but 
advocating building on the closest matches anyway — DBE provides a greater scope of 
reuse, and a closer integration of reuse with conventional engineering activities.  The 
conventional disciplines can be focused on understanding the differences between the 
current task and previous efforts, and on evaluating alternative approaches to bridging those 
gaps. 
 
DBE can be described as a generic problem solving paradigm.  A task order arrives with a 
set of requirements, for a new software system.  The software engineers interpret these 
requirements as a set of required features; in addition to requirements for the system itself, 
there may be other constraints that the engineers have to meet, and these too are interpreted 
as features.  With the features as indices, the engineers search the Experience Base for the 
organization's most relevant knowledge, including past systems that share many (if not all) 
of the current requirements, or systems that share some especially important requirements 
with the current task. 
 
The software engineers then assess the relevance of experience records they have found.  In 
the best case, the organization has performed an essentially equivalent task.  The previous 
product can then be reused, perhaps with minor modifications.  If the organization has 
performed similar but not quite equivalent tasks, the engineers try to articulate the 
differences between the current task and the past accomplishments. 
 
 



System Engineering

Experience 
Base

Application 
Problem

Solved 
Before?

Gimme 
It

Yes

Feature Match

What are the 
Differences?

Not 
  quite Feature 

Analysis 

How can we Adapt 
what we Have?

Impact / 
Implications 

Analysis

Adaptation 
Alternatives

Decisions

Solution

Design Record

New Artifacts and KnowledgeNew Opportunities for Applications

Assets

Knowledge Engineering

 
Figure 4-1: The Difference-Based Engineering model places software reuse in 

a broader context of knowledge creation. 
 
 
They then investigate how the organization's past accomplishments can be modified to 
meet the current challenge.  Typically. they will develop a number of alternative 
approaches.  As they define the alternatives, they study the implications of each approach 
and the tradeoffs between them.  On the basis of the tradeoffs, they select an approach.  
This is the classical engineering process, which lies at the center of DBE.  The key 
observations of the analysis process become part of the new system's design record and are 
fed back into the Experience Base (see Section 4.3). 
As the new system is developed, more decisions are made.  These too become part of the 
design record, and are incorporated in the Experience Base to guide future efforts. 
 
As this summary shows, the development organization must actively promote the 
incorporation of design records in the Experience Base.  It must also continually filter, 
structure, and package the information in the Experience Base so that it is accessible and 
usable by engineers.  In Figure 4-1, these responsibilities fall under Knowledge 
Engineering, which plays a role similar to Domain Engineering in more familiar scenarios 
of software reuse. 
 
4.3  The Role of Design Rationale Capture 
 
Design records play an essential role in Difference-Based Engineering.  As we observed in 
Section 2, a "living" design record is one sign of the knowledge creating approach.  What 
distinguishes a living from a moribund design record?  Evolution is one criterion: the 
record must evolve with the software system through all phases of the lifecycle. 
 
There are, however, other criteria.  If the design record is viewed as an administrative 
burden, it may be maintained as a required form of documentation, but no one will ever use 
it  The distinguishing feature of a living design record is that participants have a stake in it.  



All stakeholders in the system being built (or maintained) should feel engaged with the 
content of the design record. 
 
As a way of fostering such engagement, we offer the notion of a design narrative, which is 
an extension of the ideas of Literate Programming (Knuth 1992).  Knuth’s contention was 
that program documentation should read like literature, if the author expects other 
developers to pay attention to it.  The notion of design narratives takes this a step farther by 
suggesting a story-telling approach: 
 

The design record should tell the story of the decision process, complete with 
characters (stakeholders and systems), objectives (system requirements and 
stakeholder goals), plot drivers (risks, issues, and obstacles), conflicts (alternatives 
and tradeoffs) and resolutions (decisions).  The software design will take shape as 
a compelling and continually embellished story that has purpose and meaning to 
those who make decisions about the system.   

 
As a paradigm for structuring the design record, narratives offer several benefits.  They 
integrate a stakeholder model into the documentation of design rationales.  They encourage 
discussion of rationales in the context of stakeholder beliefs, goals, motives, concerns, 
frustrations, and priorities (see, for example, the use of dramatic scenarios in Bailin et al, 
1996).  They encourage creativity in imagining design alternatives (see, for example, the 
discussion of micro-worlds in Senge, 1990).   
 
The narrative structure raises the stakes of the design process in the eyes of the developers 
by engaging them in a dialog, inviting them to become actors in the ongoing story, 
highlighting and giving substance to the implications of decisions they have to make.  
(Similar themes, in the context of computer-user interfaces in general, are discussed in 
Laurel, 1993.) 
 
Construction of a design narrative takes considerable effort, and it will only occur if the 
narrative, rather than the software itself, is viewed as the primary product.  Such a change 
of mindset would constitute a major shift in beliefs on the part of developers, project 
managers, and customers.  Belief shifts, however, always encounter resistance.  The most 
common form of resistance to this particular change is the claim that it is not practical.   
 
A change of this sort was, nevertheless, the original goal of Literate Programming.  As a 
way of fostering the change in mindset, Literate Programming advocates the use of tools to 
reduce the burden of additional documentation.  Tools are used to convert literate programs 
into either compilable code or readable documentation.  The developer is expected to 
produce only one type of artifact, the literate program itself. 
 
 In the more ambitious realm of design narratives, multi-media tools can encourage the 
capture of design rationales, their integration into a narrative, and their playback to support 
system evolution.  Voice annotations can capture the reasoning of a programmer, who is 
perhaps weighing the merits of a set of design alternatives, without requiring him to take 
time out from the evaluation process.  Video clips of meetings can capture inflections, such 
as non-verbal cues or body language, undiluted by  translation into meeting notes.  Multi-
media presentations can provide a sense of immersion in the design story to someone 
tasked with modifying a system. 



 
These techniques are experimental, and work is underway (by the author as well as others) 
to test their feasibility.  None of them will succeed, however, if we lose sight of the primary 
goal: to treat software development as a process of cultivating knowledge, as opposed to a 
process for encoding commands. 
 

5  Conclusion 
 
We have argued that software development is essentially a knowledge creating activity; our 
failure to treat it as such has resulted in the symptoms that we refer to, collectively, as the 
software crisis.  The view of software as a vehicle for automation permeates every aspect of 
the industry.  It leads to deeply ingrained practices that software engineering methodology 
has tried unsuccessfully to change.  The emphasis on engineering has, ironically, become 
part of the problem because it tends to occlude the more scientific and exploratory aspects 
of software development.  The shift towards object orientation has highlighted the 
importance of modeling in software development; unfortunately, though, modeling is too 
often understood as simple representation, rather than as a scientific process of hypothesis 
and evaluation. 
 
We have described the key features of a knowledge creating software development 
organization.  They include a respect for discovery and learning as core design processes, a 
discipline of building upon previously acquired knowledge, and an emphasis on capturing 
the reasoning behind design decisions. 
 
References 
 
Bailin, S., Simos, M., Levine, L., and Creps, R. (1997).  Learning and Inquiry-Based Reuse 

Adoption (LIBRA): A Field Guide to Reuse Adoption through Organizational Learning.  
STARS Informal Technical Report No. STARS-PA33-AG01/001/02. 

 
Basili, V. R., Caldiera, G. and Rombach, H. D. (1994).  "The Experience Factory."  

Encyclopedia of Software Engineering, Wiley, New York. 
 
Knuth, D. E. (1992).  Literate Programming. CSLI Lecture Notes, no. 27, Center for the 

Study of Language and Information, Stanford, California. 
 
Laurel, B. (1993).  Computers as Theatre.  Addison-Wesley, Reading, MA. 
 
Nonaka, I. and Takeuchi, H. (1995).  The Knowledge-Creating Company: How Japanese 

Companies Create the Dynamics of Innovation.  Oxford University Press, Oxford. 
 
Patterson, F. G., Jr. (1997).  "Systems Engineering Life Cycles: Life Cycles for Research, 

Development, Test, and Evaluation (RDT&E); Acquisition; and Planning and 
Marketing." In A. P. Sage and W B. Rouse (Eds.), Handbook of Systems Engineering and 
Management.  Wiley, New York (forthcoming). 

 
Sage, A. P. (1995). Systems Management for Information Technology and Software 

Engineering.  Wiley, New York. 
 



Senge, P. (1990).  The Fifth Discipline: The Art and Practice of the Learning Organization.  
Currency Doubleday, New York. 

 
U. S. House of Representatives (1989).  Bugs in the Program - Problems in Federal 
Government Computer Software Development and Regulation.  Staff study by 
Subcommittee on Investigations and Oversight, Committee on Science, Space, and 
Technology, August 3, 1989. 
 
Acknowledgements 
 
The author has learned much about these issues from discussions with Mark Simos and 
Larry Levine of Organon Motives, Inc., and with Richard Evans of Engineering Research 
International. 
 


